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Finite-amplitude instability in growth step trains with overlapping step supply fields

Franz Rosenberger, Hong Lin, and Peter G. Vekilov*
Center for Microgravity and Materials Research, University of Alabama in Huntsville, Huntsville, Alabama 35899

~Received 3 June 1998; revised manuscript received 25 September 1998!

We have expanded our numerical model of coupled bulk transport in solution and interfacial kinetics in
crystal growth@Vekilov, Lin, and Rosenberger, Phys. Rev. E55, 3202~1997!# by explicitly including adsorp-
tion on and desorption from terraces between growth steps, surface diffusion, and incorporation into steps. At
the steps, the surface~adsorption layer! concentrationCs is assumed to be either continuous, i.e., have the same
values at the top and bottom of a step, or to be discontinuous, i.e., to take on different, respective terrace-
width-dependent values. In order to maximize spatial resolution about individual steps, we use a mesoscale
grid at the solution-crystal interface, which moves with the step positions and adjusts to the changing terrace
widths during the simulation. This model was evaluated with transport and kinetics parameters characteristic
for the growth of lysozyme crystals from aqueous solutions. With continuousCs at steps, the simulations
reproduced the results of our previous model in which the step supply field overlap was only indirectly
accounted for by a step-density-dependent deceleration parameter in the step velocity. When discontinuities in
Cs were allowed, significantly higher bunching instability resulted. More importantly, we found that step
bunching may or may not occur, depending on the specific step-density perturbation~magnitude, sign and rate
of step-density change!. This is why linear stability analyses do not predict the unsteady growth behavior
observed in our experiments and obtained in our simulations.@S1063-651X~99!03203-1#

PACS number~s!: 81.10.Aj, 05.70.Ln, 61.72.Cc, 68.35.Ct
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I. INTRODUCTION

Recently, employing a high-resolution laser interfero
etry technique with digital image and signal processing@1#,
we discovered kinetic instabilities in layer spreading dur
the crystallization of the protein lysozyme from solution@2#.
We found that, even under steady solution conditions,
locally measured normal growth rate and growth step~layer
edge! density fluctuate by up to several times their avera
values. The mechanism underlying these fluctuations was
duced from investigations of the dependences of the fluc
tion amplitudes and frequencies on the type of layer sou
average crystal growth rate, and crystal size~i.e., bulk trans-
port length scale@3#! during growth from unstirred solutions
We concluded that the kinetics unsteadiness represents
response of the coupled bulk-transport/interfacial-kine
processes to the intrinsic stochastics of layer genera
@2,4#. This response is similar to stability loss under const
external conditions that occurs in a variety of systems op
ating far from equilibrium under mixed control condition
for an in-depth review see Ref.@5#. Further support of the
inferred mechanism of fluctuation generation stems from
periments in which the role of bulk transport in the over
growth rate control of lysozyme crystals was reduced
forced solution flow@6,7#. As expected from the model, thi
shift in working point towards kinetics control resulted
significant reduction of the fluctuation amplitudes. Thus,
yond their practical significance, that stems from the ass
ated striae formation and expected reduction in the utility
the grown crystals@2,8#, these phenomena merit detaile
studies as a model for kinetic instability and spatiotempo
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pattern formation in the form of nonlinear waves@5# in an
open flow, albeit nonhydrodynamic system@9#.

To gain further insight, we designed a numerical mode
the coupled bulk transport and nonlinear interfacial kinet
processes in protein crystallization@10#. On evaluation with
experimentally determined kinetic coefficients for bulk tran
port @11# and interfacial processes of lysozyme@12#, this
model quantitatively reproduced the experimentally obser
kinetics unsteadiness. Changes of the governing param
toward stronger kinetics control and higher nonlinearity
kinetics, respectively, decreased and increased the fluc
tion amplitudes, as anticipated from the above instabi
considerations. We also found that discrete perturbations
velop into an increasingly steeper step bunchand multiply
through a cascade of new bunches that form ahead of the
one. This growth and spreading of the triggering perturbat
occurs through deformation of the interfacial solute sup
field of the growth steps.

Interestingly, the instability wavelengths and frequenc
observed in our experiments and simulations@2,10# are quite
different from those predicted by linear stability analysis
step motion in flowing and stagnant solutions@13–16#. Even
on inclusion of the mutual retardation of steps due to th
supply field overlap, these analyses predict stability of eq
distant step trains under conditions that result in instabilit
in our system@17#. Hence, the aim of this paper is to nume
cally study the stability/instability transition of a system re
resentative of lysozyme growth by following the evolution
step bunches triggered by perturbations of different am
tudes. Such transitions may involve a nonlinearly amplifi
response to small-scale perturbations. Since sequences
netic processes are particularly prone to respond nonlinea
we have included in our model all currently known stages
the growth mechanism. For this, we have expanded
model of coupled bulk transport and interfacial kinetic@10#

d.
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3156 PRE 59FRANZ ROSENBERGER, HONG LIN, AND PETER G. VEKILOV
to explicitly include solute adsorption at the terraces betw
steps and diffusion along the surface followed by either
sorption, or incorporation into steps. We ignore direct inc
poration from the solution into steps, since we have sho
earlier that, if present in our system, it contributes only
significantly to the interstep interactions@2#.

In the following, we provide the set of governing equ
tions and boundary conditions comprising our model in S
II. In Sec. III, the numerical approach taken in Ref.@10# is
refined by introducing at the solution-crystal interface a m
soscale grid that moves with the growth step positions
adjusts to the changing step positions and terrace wid
Results obtained with partially measured and partially
ferred kinetic parameters for lysozyme are presented and
cussed in Sec. IV. The conclusions are presented in Sec

II. MODEL

A. Diffusive bulk transport

The geometry of the diffusive bulk transport is based
the setup used in our experimental investigations@1,2# and is
the same as in Ref.@10#. The model solution consists of th
protein lysozyme in solvent ~buffer and precipitant
@1,2,18,19#!. The initial lysozyme mass concentration in th
solution isC0550 mg/ml. At 12 °C, and the precipitant con
centration and buffer pH used in the experiments, the s
bility of lysozyme isCeq53.1 mg/ml@19#. Hence, the initial
value of the supersaturations05 ln(C0/Ceq) is 2.78. Further
details of the bulk transport model, including boundary co
ditions at the container walls, are provided in Ref.@10#.

The volume-surface exchange process is governed by
interfacial boundary condition

D
]C

]zU
intf

5S D

L DCU
intf

2
Cs

t
, ~1!

where D/L5bad is the kinetic constant for adsorption o
solute from the solution at the interface into the adsorb
layer with D the bulk diffusivity and L a characteristic
length proportional to the resistance for adsorption,Cs is the
surface~adsorption layer! solute concentration, andt is the
mean lifetime of an adsorbed molecule on the surface. N
that, in contrast to the earlier model where only steps form
sinks for the bulk transport, in the current model, as
pressed by Eq.~1!, all points on the interface present pote
tial sinks.

B. Surface diffusion

At the supersaturation used in the simulations, lysozy
crystals grow by layer generation and spreading@12#. Ad-
sorbed solute molecules diffuse on the terraces. The con
vation equation for the adsorbed solute is

]Cs

]t
5Ds

]2Cs

]x2 1D
]C

]zU
intf

, ~2!

where the surface diffusivityDs is assumed independent o
the protein surface concentration. As in Eq.~1!, the second
term on the right-hand side of Eq.~2! represents the surface
volume exchange flux.
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Following Refs.@20,21#, we assume that the flux into
step, j s , is proportional to the deviation of the surface co
centrationCs at the step from its equilibrium valueCs

eq, i.e.,
to the linear supersaturation at the step. On thei th terrace,
bound by thei th and (i 11)th steps~located atx5xi and
xi 11 , respectively! these fluxes are

j s~xi1 !5Ds

]Cs

]x U
xi1

5bs„Cs~xi1 !2Cs
eq
…, ~3a!

j s~xi 112 !52Ds

]Cs

]x U
xi 112

5bs„Cs~xi 112 !2Cs
eq
….

~3b!

Here, bs is the kinetic coefficient for incorporation of ad
sorbed molecules into steps, and2 and 1 denote, respec-
tively, the terrace to the left and right of a step moving in t
positivex direction, see Fig. 1.

The set of the bulk diffusion equation and Eqs.~1!–~3!
represent the assumed pathway of solute from the solu
into the crystal. It consists of bulk diffusion, followed b
exchange of molecules between the adsorbed layer and
solution adjacent to the interface, diffusion of adsorbed m
ecules towards steps and incorporation into steps, which
sults in step motion.

Since jumps of adsorbed molecules over the steps req
a higher activation energy than interterrace diffusion@22,23#,
similar to other recent works~e.g., Ref.@24#!, in the majority
of the cases presented here we treat each terrace as an
pendent surface concentration domain. Thus, we allow fo

Cs~xi2 !ÞCs~xi1 !. ~4!

However, since in some cases such diffusion across the s
is possible@25#, we also explore the consequences of t
condition

Cs~xi2 !5Cs~xi1 !. ~5!

In all cases, we assume equal kinetic coefficients for
corporation from the left terracebs

2 and the right terracebs
1

and express them in the form

bs
25bs

15bs50.5Ds /Ls . ~6!

Here Ls is a characteristic length proportional to the res
tance for incorporation from the surface into steps. Note t
the restriction of Eq.~6! can be readily relaxed and the co
sequences of asymmetric kinetics of incorporation into st
@22# for step train stability can be studied without oth
changes in the model.

FIG. 1. Steps in the interface with one-dimensional surface
fusion grid and attached vertical grid lines of the mesoscale dom
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PRE 59 3157FINITE-AMPLITUDE INSTABILITY IN GROWTH STEP . . .
We will see in Sec. II D that the characteristic surfa
diffusion velocityDs /ls is of the order of 5mm/s. This is an
order of magnitude higher than the typical step velocity
lysozyme crystal growth of 0.5mm/s @12#. Hence, the ne-
glect of an advective contribution, associated with step m
tion, in Eqs.~3! is well justified.

Furthermore, as in Refs.@20,21,26,27# we consider the
steps to be sufficiently rough, i.e., to possess high kink d
sity so that diffusion along their edges can be ignored. Th
the restriction of our model to two dimensions, with the ste
represented as point sinks for the adsorbed solute, is
well justified.

C. Step motion and step generation

The surface flux into a step determines its velocity
cording to

v5 j sV/\, ~7!

whereV53310220cm3 @28,29# is the volume per lysozyme
molecule in the crystal andh51.0231026 cm is the step
height @30–32#. Thus, accounting for the fluxes into a ste
from the left and right, using Eqs.~4!, the velocity of thei th
step atxi , can be expressed as

v i5
V

h
~ j s

21 j s
1!5

V

h

3$bs@Cs~xi2 !2Cs
eq#1bs@Cs~xi1 !2Cs

eq#%. ~8!

Steps that have a higher velocity will eventually catch
with slower ones. We assume that, due to entropic repul
between steps@33#, a pair of steps cannot form a double st
or an overhang. Somewhat arbitrarily, the repulsive poten
is chosen as a ‘‘hard-body’’ interaction, with the charact
istic distance between the steps set at five lattice param
(55h). The velocity of the trailing step in a pair tha
reached this critical separation is adjusted such that a cl
approach is prevented.

Growth on a facet ceases when all initially imposed st
have reached the center and the facet has become sing
Hence, growth can only be sustained through the replen
ment of growth steps. Therefore, in accordance with rec
findings for lysozyme at the supersaturation used in
simulations@12#, we assume that growth steps are genera
by two-dimensional~2D! nucleation at the edge of the cry
tal, where the supersaturation is the highest@3,34,35#.

The probability for the generation of a new growth st
within a time tnucl after a preceding two-dimensional nucl
ation event can be expressed as@36#

P~ tnucl,Cs
edge!512exp~2I 0tnucl!, ~9!

whereI 0 is the steady-state rate of 2D nucleation@37#,

I 05ACs
edgeexp~2B/ss

edge!, ~10!

and

ss
edge5 lnS Cs

edge

Cs
eq D . ~11!
r
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The constantA ~cm2/mg s! contains activation and surfac
energies as well as frequency factors@38,39#, and B
5pVg2h/(kBT)2, with g51 erg/cm2 @40,41# the step free
energy, andkB the Boltzmann constant. At 12 °C (T
5285 K), this results inB567.2. Note that in Eqs.~9!–~11!
we use the surface supersaturation as nucleation dri
force, rather than the interfacial bulk supersaturation e
ployed in Ref.@10#. SinceCs

edge and, thus,ss
edge depend on

the distance the prior step has traveled on the surface,
formulation accounts for the effect of the velocity of th
prior step on the nucleation probability of the following ste
i.e., the so-called back-stress effect@26,42#.

All results presented in this paper were obtained based
a deterministic nucleation mode. A new layer is genera
wheneverP.«. We set«50.99. Unless stated otherwise
the value of the constantA is chosen such that at the initia
surface supersaturation at the nucleation sitess

0,edge@see Eq.
~12!#, the slope of the resulting step train equalsp0. Thus,
the nucleation time for the first time step should be equa
the ratioh/R05h/p0v(Cs

0,edge), which leads to

A5
ln~12«!

Cs
0,edgetnuclexp~2B/ss

0,edge!

5
p0v~Cs

0,edge! ln~12«!

Cs
0,edgeh exp~2B/ss

0,edge!
, ~12!

whereCs
0,edgeandss

0,edgeare the initial values of these var
ables at the edge.

D. Determination of step kinetics parameters

For an equidistant step train at steady state, and assum
that bulk transport is significantly faster than the interfac
processes, our model is equivalent to that of Ref.@21#. Thus,
we can extract the values of the kinetics constants for ads
tion, desorption, surface diffusion and incorporation in
steps from the surface by correlating our experimentally
terminedv(s) to the theoretically derived dependences
Ref. @21#. The experimental data are best described by@12#
~see also discussion in Ref.@10#!

v5
bs

11kp
, ~13!

with b51531025 cm/s andk5500. From independent ex
periments, we also know the value of the characteristic s
face diffusion length,ls5231024 cm @43#. As shown in
Ref. @43#, in the case of rapid bulk transport, in terms of Re
@21#,

b5
ls

2DVC

LLsh
and k5

ls
2

Lsh
. ~14!

Equations~14! allow us to determine the values ofL and
Ls . To find the characteristic adsorption timet, we use the
relation

ls
25Dst. ~15!
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TABLE I. Parameters and initial conditions used in the simulations of the ‘‘base case.’’ For source
derivations see text.

Parameters Notation Value Unit

Bulk diffusivity D 1.0631026 cm2/s
Adsorption resistance L 0.22 cm
Surface diffusivity Ds 1.031027 cm2/s
Characteristic surface diffusion length ls 2.031024 cm
Characteristic incorporation resistance Ls 7.831025 cm
Mean lifetime of adsorbed molecules t 0.4 s
Temperature T 285 K
Initial vicinal slope p0 5.031023

Initial bulk protein concentration C0 50 mg/ml
Equilibrium bulk protein concentration Ceq 3.1 mg/ml
Initial surface protein concentration Cs

0 9.131025 mg/cm2

Equilibrium surface protein concentration Cs
eq 5.631026 mg/cm2
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There have been no determinations ofDs for lysozyme.
However, for the protein canavalin, 231028,Ds,7
31027 cm2/s @44#. Hence, we assumeDs5131027 cm2/s,
which is about an order of magnitude lower than the b
diffusivity, D51.0631026 cm2/s @11#.

Before growth has started, or after equilibrium is reach
]C/]z50 throughout the solution includingz50. Hence,
from Eq. ~1!,

Cs
05

Dt

L
C0 and Cs

eq5
Dt

L
Ceq. ~16!

From these relations, we determine the initial and equi
rium values ofCs .

The values of the parameters and initial conditions use
the simulations of the growth behavior of the prote
lysozyme are summarized in Table I, with the initial slo
p05531023 representing an average value found in num
ous experiments@12,43#.

III. NUMERICAL APPROACH

The ‘‘global’’ computational grid used for the diffusiv
bulk transport is identical to that used in Ref.@10#. As in that
earlier work, the concentration distribution at the interfa
was obtained in a mesoscale grid that covers the narrow
terfacial area. The horizontal grid spacing in the mesosc
domain is based on a nonuniform one-dimensional surf
grid used for theCs computations. This 1D grid is move
with the steps and is adjusted according to the chang
widths of the terraces at each time step in the following w
When the two steps that bound a terrace are located a
positionsxi and xi 11 , nine additional grid pointsxi , j

g are
distributed over thisi th terrace according to

xi , j
g 5S xi 112xi

2 D FcosS 2 j 11

2~k21!
p D11G , j 51,...,k22.

~17!

Hence, there arek511 grid points per terrace, and with typ
cally 150 steps/terraces on the interface, the surface diffu
mesh contains approximately 1500 grid points. Note that
k

,

-

in

-

e
n-
le
e

g
.
he

on
e

distribution given by Eq.~17!, which represents the zerot
nodes of the Chebyshev polynomials, results in finer g
spacing close to the terrace edges, the steps. This mesh
uniformity, together with the step-bound motion of the gr
ensures high accuracy of the calculation of the surface
into the steps. The vertical grid lines in the mesoscale
main, which extend to the first horizontal grid line above t
interface in the global grid, i.e., toz525mm, move with the
expanding/contracting mesh of the 1D surface doma
Since, due to annihilation at the center of the facet~see be-
low! and generation at the edge, the number of steps on
interface changes continuously, as does the exact numb
grid points in the 1D surface domain and, thus, in the m
soscale domain.

In the z-direction, them-s domain contains nine horizon
tal grid lines between its top boundary and the crystal s
face; see Fig. 1~b!. These grid lines are generated accordi
to the power law

zi
g5z1

g1S i 21

k21D a

~zk
g2z1

g!, i 51,...,k. ~18!

Herek511, as in the surface diffusion grid, withz1
g50, and

zk
g525mm. The nonuniformity parametera was set at 2.05

so thatz2
g2z1

g50.22mm, which corresponds to the averag
mesh size in thex direction. Note that we used here 11 ho
zontal grid lines to cover the mesoscale domain, compare
21 in Ref.@10#. Detailed tests showed that this reduced me
still results in sufficient accuracy and reproducibility. Equ
tion ~18! is also used to calculate the positions of thevertical
grid lines in the mesoscale domain to the left of the l
crystal edge by substitutingz for x.

As in our earlier model@10#, the actual changes in inter
face position and shape were ignored in the transport si
lations; see Refs.@10,35# for justification.

Step propagation was simulated as follows. When a n
step is generated, the old steps are renumbered by subs
ing i 11 for i. When a step reaches the facet center, it
annihilated. The step positionsxi are moved along the con
tinuous coordinate axisx at discrete time intervalsDt ac-
cording to

xi
n115xi

n1vnDt, ~19!
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wheren andn11 denote the successive time steps. The lo
values of the vicinal slopepi are calculated as

pi5
h

xi 112xi
. ~20!

The local normal growth rateR is obtained from

Ri5piv i . ~21!

Since the kinetic parameters for nucleation and growth
compatible with those used in Ref.@10#, we expect similar
values of step velocities, nucleation frequencies, and gro
rates. Hence, we used the same simulation time stepDt
50.025 s.

The simulation procedure is very similar to the one us
in Ref. @10#.

IV. RESULTS AND DISCUSSION

A. Response to a large reduction in step production
rate „base case…

First, we have investigated the evolution of the interfa
morphology using the basic set of parameters listed in Ta
I, allowing for discontinuity inCs at the steps, as in Eq.~4!.
With Cs

0,edge5Cs
0, Eq. ~12! yields for this ‘‘base case’’ the

preexponential factor in the nucleation rate,A51.24
31014cm2/mg s. Simulations were carried out for a grow
time of 60 min. Figure 2 illustrates the evolution of the i
terface profile for the first 10 min of this base case. T
newly created step train has about half the step density o
initial train given by p05531023. This is due to solute
depletion in the solution adjacent to the interface and

FIG. 2. Interface profiles obtained at various simulation tim
for the base case~the set of parameters in Table I, withA51.24
31014 cm2/mg s! and assuming discontinuousCs across steps; i.e.
no exchange of adsorbed solute between terraces.z values are in
units of step heighth5102 Å. Changes inz values atx50 account
for layers generated between the times noted, i.e., individual s
remain at theirz while propagating to the right. The dotted horizo
tal atz/h50 separates new and old steps. Dashed line,A traces the
location of the initial step density perturbation.
al

re

th

d

e
le

e
he

e

corresponding decrease in the surface concentration. In
cordance with Eqs.~9!–~11!, a reduction inCs

edgeresults in a
decreased step generation~nucleation! rate and, hence, a re
duced vicinal slope of the new step train.

Furthermore, Fig. 2 shows that this large perturbation
step spacing triggers a cascade of step bunches on the vi
face. In this presentation, in which individual steps remain
constantz/h, one sees that steps move through bunches
their way to the facet center; that is, bunches move wit
velocity vbunch, which is distinctly lower than the averag
step velocityv̄. This behavior is similar to that obtained i
our earlier model@10# and related to predictions of the kine
matic wave theory@45#. In that work, we accounted for in
teractions between growth steps only through a phenome
logical parameterk without consideration of the details o
surface diffusion@10#.

Our current more detailed model allows us to elucid
the mechanism underlying this bunching and cascading
cess through interactions between the individual steps.
this, in Fig. 3 we show the profile of the interface segmen
t52 min together with the corresponding distributions
surface concentrationCs and interfacial solution concentra
tion Ci5Cz50 . To emphasize the consequences of allow
for Cs discontinuity across steps, we have emphasized
concentration differences between the upper and lower
of select steps by data points for the respective boundingCs
values, see the small circles in Fig. 3~b!. ThisCs(x) has local

s

ps

FIG. 3. Details of interfacial conditions after 2 min of growth
~a! Interface profile, 1 through 4 denote steps that were the clo
to the edge att50; 11 through14 denote first four newly nucle-
ated steps.~b! Distribution of surface concentrationCs ; note the
sharp minima at steps.~c! Corresponding distribution of bulk con
centration at the interface,Ci5Cuz50 .
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3160 PRE 59FRANZ ROSENBERGER, HONG LIN, AND PETER G. VEKILOV
minima at the locations of the steps which are sinks for
adsorbed solute, in agreement with analytical solutions
tained for the growth mechanism involving surface diffusi
@21,26,27#. Note that the magnitude of strongly depends
the width of the terrace between two steps. As the dista
between two steps decreases,Cs drops since the probability
that adsorbed solute reaches either of the bounding steps
ing the mean lifetimet is inverse proportional to the squa
of the terrace width. Since theCi distribution is coupled to
Cs(x), its local minima at steps in bunches are deeper tha
wider separated steps, see Fig. 3~c!.

TheCs(x) distributions also shed light on the mechanis
of step motion through bunches and the associated casca
process. For instance, Fig. 3~b! shows that at that momen
step 1 is much better supplied from its upper terrace t
step 2 and, thus will push deeper into bunchC. In parallel,
step 3 is better supplied from its lower terrace and, theref

FIG. 4. Time dependence of positions of all steps during first
min of growth. Step bunchesA–C are the same is in Fig. 3. A 2:1
blowup of area~x<50mm, t<100 s) is shown.
e
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will pull away from the bunch. This, in turn, will widen the
terrace between steps 3 and 2, thus increasing the so
supply to step 2 from its lower terrace. As a consequen
step 2 will eventually be able to also pull away from bun
C, etc.

The spreading of the bunching cascade over the wh
facet can be readily followed in the long-term traces of t
step positions presented in Fig. 4. Overall, we see that
initial perturbation, that stems from the acceleration of s
one due to the delayed nucleation of step11 ~see above!,
develops into a step bunchA and induces a cascade of ste
bunchesB, C,... . By tracing the origins of these new ste
bunches, one can see that the cascading wave propa
with a relatively constant velocity and reaches;280 mm at
t5600 s. In addition, while the step bunches propagate
wards the facet center and individual steps continuou
move through them, the bunches tend to steepen.

More detailed insight into the changes in number and
particular, in steepness of the step bunches is provided by
time traces of the vicinal slopep, recorded at three location
on the half-facet, that are presented in Figs. 5~a!–5~c!. Close
to the edge at which growth steps are generated@Fig. 5~a!#
only the initial macrostep passes at;1 min through the sam-
pling point. The consecutive reduced slope characterizes
newly generated step train seen in Fig. 2. At the middle a
right locations, a forerunner~barely discernible change in
step spacing! is followed by a cascade of macrosteps whi
grow in number on their way to the facet center. At bo
locations, the last bunch to arrive is the initial macrostep, i
bunchA in Figs. 2–4. The number of step bunches created
front of bunchA and registered at the right location@Fig.
5~c!# are about twice the number registered at the mid
@Fig. 5~b!#. This is to be expected given a rather consta

0

FIG. 5. Time traces of slopep at three interface locations, 15, 150, and 285mm from the crystal edge, obtained for base case and:~a!–~c!
discontinuousCs at steps, same as for Figs. 2–4;~d!–~f! continuousCs at steps.
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cascading wave velocity and twice the distance over wh
step bunches can evolve.

The above step pattern evolution is similar to the o
obtained with simpler model assumptions in Ref.@10#. How-
ever, the number of step bunches, their frequency, and
maximum slope reached in a step bunch are consider
higher in the present case. This means that the instabilit
response to individual step density perturbations, as we
in the creation of new step bunches through the casca
mechanism is higher. As suggested by the increased s
train instability obtained in various theoretical analyses t
assume asymmetric step kinetic coefficientbs @46–48#, the
above strong response might be due to the discontinuit
Cs at the steps allowed for in this refined model. To test th
a base case was run with imposedCs continuity, see Eq.~5!.
The resultingp(t) traces at the three locations on the ha
facet are presented in Fig. 5~d!–5~f!. We see that this restric
tion causes an increase in step train stability: the numbe
step bunches, the bunching frequency, and the slope in
bunches are significantly reduced. The reason is that
constraint effectively averagesCs at a step, say step 2 att
525 s in Fig. 3. The resulting increase in velocity of this st
increases the time needed for step 3 to escape the prox
of step 2 to initiate a new bunch.

All following simulations were performed allowing fo
discontinuousCs at the steps, Eq.~4!.

B. Response to a large increase in step density

For the base case, we have recognized an increase in
race width between the trailing old step 1 and the first n
step11 to instigate step bunching. Similarly, one might e
pect a narrower new terrace to trigger an instability in
original, equidistant step train. Hence, we have performe
simulation with a large increase in new step density. T
was achieved by setting the preexponential coefficient
Eq. ~12! to A58.1631017cm2/mg s from the 1.24
31014cm2/mg s used in the base case.

The results of this run are presented in a series of in
face profiles in Fig. 6. No step bunches resulted in this ca
One sees that the new steps rapidly adjust their spacin
essentially that of the initial step train~see also the inset in

FIG. 6. Interface profile response to increase in step produc
rate (A58.1631017 cm2/mg s!. No bunching occurs; vicinal face i
morphologically stable.
h
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to

Fig. 6!. This strongly suggests that the step bunching a
cascading observed for this system in response to diffe
perturbations present a finite amplitude instability, in co
trast to the instabilities predicted earlier by linear stabil
analyses@14–16#.

The step dynamics that underlie this step train stabi
become clear by a closer inspection of the patterns resu
from this perturbation. The closer spacing between step
and 11 delays step 1~for the notations, see above!. This
accelerates step 2 that zooms forward to catch up with st
and cause a bunch. The situation appears identical to
illustrated in the blown up area in Fig. 4, with the only di
ference being the number of the accelerated step: 2 ins
of 1. However, this secondary nature the acceleration is
cial for its consequences: the step acceleration is weaker
the velocity of step 2 adjusts to that of step 3 without caus
a bunch. The sensitivity of the step patterns to the magnit
of the step acceleration is in the roots of the stability of t
step train with respect to small perturbations.

C. Dependence of response on rate of step-density change

To further explore this finite amplitude instability, w
have performed simulations in which the rates, i.e., the m
nitude of the growth step-density changes imposed per si
lation time step was varied. In the first of these runs,
decreasedA linearly over the first 10 min from 1.7
31016cm2/mg s to the 1.2431014cm2/mg s of the base case
~The value of 1.731016 was determined in exploratory run
to yield essentially the same new step spacing as that g
by the initial vicinal slopep0.) This linear change inA re-
sults in an exponential increase in step nucleation time@see
Eqs.~9! and ~10!# and, similarly, in new terrace width.

Figure 7~a! presents the results, with the inset illustratin
the time trace of the nucleation time. One sees that the in
low rate of step density~nucleation time! change does no
result in bunching. A cascade of macrosteps forms only
response to the steep change that sets in at approximate
min. The importance of the perturbation magnitude is furth
underscored by comparing Fig. 2 to the 8- and 10-min p
files in Fig. 7~a!. Although in the latter two profiles a step
density perturbation associated withlower slope of the newly
generated step is present, no step bunching or cascadin
sues. Bunches form only after this slope difference becom
substantial in the 12- and 14-min profiles. This well corrob
rates our contention that the above step bunching casc
form only in response to step-density perturbations of su
cient amplitude.

Note that the different response to small and large den
perturbation should not be caused by different distribution
their Fourier modes. The slope changes discussed here
represented by the Heaviside step function. Thus, the co
sponding Fourier spectra have identical frequency distri
tions, with the amplitudes proportional to the ratio of th
initial to final slope values, i.e., to the perturbation mag
tudes.

This insight is further rounded out by the results of
simulation in whichA was set to 8.1631017cm2/mg s during
the first 10 min and then abruptly decreased to
31016cm2/mg s. Independent runs have shown that neit
of these values, when individually applied to the base ca

n
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FIG. 7. Interface profiles response to~a! varying rate of decrease in step production rate~linear decrease ofA from 1.731016 to 1.24
31014 cm2/mg s during first 10 min!. Inset: corresponding nucleation time trace. Note that although a step density perturbation~lower slope!
is present already at 8 and 10 min, bunching and cascading sets in only at 12 min, when the rate of change becomes high.~b! Abrupt decrease
of A from 8.1631017 to 1.731016 cm2/mg s att510 min.
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result in bunching. However, bunching should occur in
sponse to the sudden change from the steeper vicinal s
resulting from the first value, to the much lower one result
from the second one. This is confirmed by the results in F
7~b!. First we see an increase in vicinal slope, as in the c
of Fig. 6, followed by a bunching cascade in response to
lower A, which, when applied to thep0 of the base case
caused nothing. Note also that these results refute a h
thetical instability scenario~linear or nonlinear!, with the
vicinal slope as the control parameter.

D. Comparison with linear stability theories

For a head-on comparison with linear stability theor
@13–16#, we set the preexponential coefficient in the nuc
ation rate equation, Eq.~10!, to 1.731016cm2/mg s. This
value ensures approximate preservation of the initial slo
step density on the crystal face even with decreasing su
saturation at the location of step generation. If a simulatio
run with this value, no step bunching is observed in spite
the slight misfit between the initial and the newly developi
slope. For the intended tests, after 5 min of growth via
equidistant step train, we imposed a 5% harmonic pertu
tion on step density by shifting each step byx̃i
50.05(xi2xi 21)sin(2pxi /x̂), wherexi and xi 21 are the po-
sitions of i th and (i 21)th steps at 5 min, andx̂ is the per-
turbation wavelength. We chose three values ofx̂: 50, 100,
and 200mm, that cover the range of step bunching wav
lengths observed in the experiments and simulati
@2,4,10#.

The results of these runs were output in terms of serie
interfacial profiles and step density traces at three face lo
tions, similar to Figs. 2 and 5, respectively. Both groups
results showed no step bunching for simulated growth tim
as long as 1 h. This is not surprising: if a Heaviside st
-
pe
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function perturbation, which is equivalent to a series of h
monic perturbations of various frequencies and amplitud
does not cause step bunching, it is unlikely that a sin
harmonic perturbation may do so.

Based on these results, we suggest that the macrostep
mation associated with the growth kinetics fluctuations o
served in our experiments with the protein lysozyme@2# are
triggered by major step-density variations. Such variatio
may arise from the intrinsically stochastic nature of tw
dimensional nucleation. In the case of step generation
dislocations, they may be the result of the interaction
tween steps originating at several dislocations in a comp
dislocation source, or by obstacles in the steps’ pathw
@49#. This conclusion is supported by numerous observati
of differences in fluctuation amplitudes and time scales
crystals with different growth step sources@2,4#, as well as
by the recorded variations in unsteady behavior followi
changes in step source activity on the same crystal@4,50#.

VI. SUMMARY AND CONCLUSIONS

We have explicitly included adsorption and diffusion o
and desorption from, growth terraces, together with incor
ration into steps in a numerical model of coupled bulk tra
port and interfacial kinetics in crystal growth. The mod
was evaluated with parameters characteristic of the cryst
zation of the protein lysozyme. The results show that disc
tinuity in the surface concentration at steps, which can a
from higher surface diffusion activation barriers at the ste
leads to significantly higher bunching instability. When co
tinuous surface concentration was assumed, the simulat
reproduced the results of a simplified model in which s
supply field overlap was accounted for by introducing a d
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celeration factor proportional to step density in the st
velocity/supersaturation dependence@9#.

More importantly, the simulations show that a ste
density perturbation, depending on its amplitude, sign,
rate of step-density change, may or may not evolve int
step bunching cascade. This explains why linear stability
proaches, in which the evolution of the response is indep
dent of the perturbation amplitude, do not yield the unste
growth kinetics obtained in our experiments and simulatio
st
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