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Finite-amplitude instability in growth step trains with overlapping step supply fields
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We have expanded our numerical model of coupled bulk transport in solution and interfacial kinetics in
crystal growth[Vekilov, Lin, and Rosenberger, Phys. Rev5g 3202(1997)] by explicitly including adsorp-
tion on and desorption from terraces between growth steps, surface diffusion, and incorporation into steps. At
the steps, the surfadadsorption lay@rconcentratiorCg is assumed to be either continuous, i.e., have the same
values at the top and bottom of a step, or to be discontinuous, i.e., to take on different, respective terrace-
width-dependent values. In order to maximize spatial resolution about individual steps, we use a mesoscale
grid at the solution-crystal interface, which moves with the step positions and adjusts to the changing terrace
widths during the simulation. This model was evaluated with transport and kinetics parameters characteristic
for the growth of lysozyme crystals from aqueous solutions. With contin@uat steps, the simulations
reproduced the results of our previous model in which the step supply field overlap was only indirectly
accounted for by a step-density-dependent deceleration parameter in the step velocity. When discontinuities in
C, were allowed, significantly higher bunching instability resulted. More importantly, we found that step
bunching may or may not occur, depending on the specific step-density perturtmagignitude, sign and rate
of step-density changeThis is why linear stability analyses do not predict the unsteady growth behavior
observed in our experiments and obtained in our simulati@K063-651X99)03203-1

PACS numbg(s): 81.10.Aj, 05.70.Ln, 61.72.Cc, 68.35.Ct

[. INTRODUCTION pattern formation in the form of nonlinear wavgs] in an
open flow, albeit nonhydrodynamic systg6j.

Recently, employing a high-resolution laser interferom- To gain further insight, we designed a numerical model of
etry technique with digital image and signal procesdihlj  the coupled bulk transport and nonlinear interfacial kinetics
we discovered kinetic instabilities in layer spreading duringprocesses in protein crystallizatiph0]. On evaluation with
the crystallization of the protein lysozyme from soluti@®].  experimentally determined kinetic coefficients for bulk trans-
We found that, even under steady solution conditions, theort [11] and interfacial processes of lysozyr&2], this
locally measured normal growth rate and growth gleager  model quantitatively reproduced the experimentally observed
edge density fluctuate by up to several times their averageinetics unsteadiness. Changes of the governing parameters
values. The mechanism underlying these fluctuations was deeward stronger kinetics control and higher nonlinearity in
duced from investigations of the dependences of the fluctuekinetics, respectively, decreased and increased the fluctua-
tion amplitudes and frequencies on the type of layer sourcgion amplitudes, as anticipated from the above instability
average crystal growth rate, and crystal dize., bulk trans-  considerations. We also found that discrete perturbations de-
port length scal¢3]) during growth from unstirred solutions. velop into an increasingly steeper step buretd multiply
We concluded that the kinetics unsteadiness represents titerough a cascade of new bunches that form ahead of the first
response of the coupled bulk-transport/interfacial-kineticone. This growth and spreading of the triggering perturbation
processes to the intrinsic stochastics of layer generationccurs through deformation of the interfacial solute supply
[2,4]. This response is similar to stability loss under constanfield of the growth steps.
external conditions that occurs in a variety of systems oper- Interestingly, the instability wavelengths and frequencies
ating far from equilibrium under mixed control conditions; observed in our experiments and simulatip2d.0] are gquite
for an in-depth review see Rdb]. Further support of the different from those predicted by linear stability analysis of
inferred mechanism of fluctuation generation stems from exstep motion in flowing and stagnant solutiddi8—16. Even
periments in which the role of bulk transport in the overall on inclusion of the mutual retardation of steps due to their
growth rate control of lysozyme crystals was reduced bysupply field overlap, these analyses predict stability of equi-
forced solution flow[6,7]. As expected from the model, this distant step trains under conditions that result in instabilities
shift in working point towards kinetics control resulted in in our systenj17]. Hence, the aim of this paper is to numeri-
significant reduction of the fluctuation amplitudes. Thus, be-<cally study the stability/instability transition of a system rep-
yond their practical significance, that stems from the associresentative of lysozyme growth by following the evolution of
ated striae formation and expected reduction in the utility ofstep bunches triggered by perturbations of different ampli-
the grown crystald2,8], these phenomena merit detailed tudes. Such transitions may involve a nonlinearly amplified
studies as a model for kinetic instability and spatiotemporalesponse to small-scale perturbations. Since sequences of ki-

netic processes are particularly prone to respond nonlinearly,
we have included in our model all currently known stages of
*Author to whom correspondence should be addressedhe growth mechanism. For this, we have expanded our
Electronic address: peter@cmmr.uah.edu model of coupled bulk transport and interfacial kingti€]
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to explicitly include solute adsorption at the terraces between
steps and diffusion along the surface followed by either de-
sorption, or incorporation into steps. We ignore direct incor-

poration from the solution into steps, since we have shown
earlier that, if present in our system, it contributes only in-

significantly to the interstep interactiofi2].

In the following, we provide the set of governing equa-
tions and boundary conditions comprising our model in Sec. F|G. 1. Steps in the interface with one-dimensional surface dif-
Il. In Sec. lll, the numerical approach taken in REFO] is  fusion grid and attached vertical grid lines of the mesoscale domain.
refined by introducing at the solution-crystal interface a me-
soscale grid that moves with the growth step positions and Following Refs.[20,21], we assume that the flux into a
adjusts to the changing step positions and terrace widthstep,j, is proportional to the deviation of the surface con-
Results obtained with partially measured and partially in-centrationC, at the step from its equilibrium valug®?, i.e.,
ferred kinetic parameters for lysozyme are presented and digo the linear supersaturation at the step. Onitheterrace,
cussed in Sec. IV. The conclusions are presented in Sec. Wound by theith and §+ 1)th steps(located atx=x; and

Xj.1, respectively these fluxes are

1. MODEL

i dCq .
A. Diffusive bulk transport Js(Xi+)= DSW = Bs(Cs(xi+)—CY, (39
The geometry of the diffusive bulk transport is based on a
the setup used in our experimental investigatidng] and is JC
the same as in Re[lQ]. The model solution consists pf the js(Xipg1—)=— DSTS =B(Cq(X;41—)—CE.
protein lysozyme in solvent(buffer and precipitant Xl qm
[1,2,18,19). The initial lysozyme mass concentration in the (3b)

solution isC°=50 mg/ml. At 12 °C, and the precipitant con-

centration and buffer pH used in the experiments, the soluklere, Bs is the kinetic coefficient for incorporation of ad-
bility of lysozyme isC®%= 3.1 mg/mi[19]. Hence, the initial sorbed molecules into steps, ardand + denote, respec-
value of the supersaturatiar®=In(C%C®9 is 2.78. Further tively, the terrace to the left and right of a step moving in the
details of the bulk transport model, including boundary con-positivex direction, see Fig. 1.

ditions at the container walls, are provided in R@f0]. The set of the bulk diffusion equation and E¢#)—(3)
The volume-surface exchange process is governed by tHepresent the assumed pathway of solute from the solution
interfacial boundary condition into the crystal. It consists of bulk diffusion, followed by

exchange of molecules between the adsorbed layer and the
D solution adjacent to the interface, diffusion of adsorbed mol-

TA Cl - T @) ecules towards steps and incorporation into steps, which re-
intf sults in step motion.
where D/A = 8,4 is the kinetic constant for adsorption of  Since jumps of adsorbed molecules over the steps require
solute from the solution at the interface into the adsorbed higher activation energy than interterrace diffudia®, 23,
layer with D the bulk diffusivity and A a characteristic Similar to other recent worke.g., Ref{24]), in the majority
length proportional to the resistance for adsorpti@ais the of the cases presented here we treat each terrace as an inde-

surface(adsorption layersolute concentration, antlis the pendent surface concentration domain. Thus, we allow for
mean lifetime of an adsorbed molecule on the surface. Note
that, in contrast to the earlier model where only steps formed

sinks for the bulk transport, in the current model, as exgyever, since in some cases such diffusion across the steps
pressed by Eq(1), all points on the interface present poten-js nossible[25], we also explore the consequences of the

tial sinks. condition

aC
0z

intf

Cs(xi—)#Cs(xi ). 4

B. Surface diffusion Cs(xi—)=Cq(xi+). (5

At the supersaturation used in the simulations, lysozyme |, g cases, we assume equal kinetic coefficients for in-

crystals grow by layer generation and spreadib@l. Ad-  .,h6ration from the left terrac8- and the right terracg
sorbed solute molecules diffuse on the terraces. The consef b s 9 Bs

. ) ) nd express them in the form
vation equation for the adsorbed solute is P

dCs _ #°Cy _dC Bs = Bs =Bs=0.5Ds/As. (6)

——=Dg=>+D—| . 2 . - . .
ot ®ox° 9Z|; Here A is a characteristic length proportional to the resis-

tance for incorporation from the surface into steps. Note that
where the surface diffusivitp is assumed independent of the restriction of Eq(6) can be readily relaxed and the con-
the protein surface concentration. As in E#), the second sequences of asymmetric kinetics of incorporation into steps
term on the right-hand side of ER) represents the surface- [22] for step train stability can be studied without other
volume exchange flux. changes in the model.
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We will see in Sec. IID that the characteristic surface The constanA (cmz/mgs) contains activation and surface
diffusion velocityD /A is of the order of Sum/s. Thisisan energies as well as frequency factor88,39, and B
order of magnitude higher than the typical step velocity for=7Qy?h/(kgT)?2, with y=1 erg/cnt [40,41] the step free
lysozyme crystal growth of 0..wm/s [12]. Hence, the ne- energy, andkg the Boltzmann constant. At 12°CT(
glect of an advective contribution, associated with step mo=285K), this results irB=67.2. Note that in Eq¥9)—(11)
tion, in Egs.(3) is well justified. we use the surface supersaturation as nucleation driving

Furthermore, as in Ref§20,21,26,2Y we consider the force, rather than the interfacial bulk supersaturation em-
steps to be sufficiently rough, i.e., to possess high kink denployed in Ref.[10]. SinceC&%®and, thusc$%*depend on
sity so that diffusion along their edges can be ignored. Thushe distance the prior step has traveled on the surface, this
the restriction of our model to two dimensions, with the stepSormulation accounts for the effect of the velocity of the
represented as point sinks for the adsorbed solute, is algsrior step on the nucleation probability of the following step,
well justified. i.e., the so-called back-stress eff¢26,42.

All results presented in this paper were obtained based on
C. Step motion and step generation a deterministic nucleation mode. A new layer is generated
: . . . wheneverP>¢. We sete =0.99. Unless stated otherwise,

The surface flux into a step determines its velocity %the value of the constart is chosen such that at the initial

cording to . : dge
surface supersaturation at the nucleation s@é “[see Eq.

v=jQ/h, (7)  (12)], the slope of the resulting step train equpfs Thus,

the nucleation time for the first time step should be equal to
whereQ =3x 10 2°cm®[28,29 is the volume per lysozyme the ratioh/R°=h/p% (C2°%, which leads to
molecule in the crystal anti=1.02<x10 ®cm is the step
height[30—33. Thus, accounting for the fluxes into a step In(1—¢)
from the left and right, using Eq#4), the velocity of theth =
step atx;, can be expressed as Co°%%, exp — B/ 2°%

Q Q pov(Cg’ed93 In(1—¢)

Ui:F(js_+j;):F :Co,edg%exq_B/ 0,edgs ’ (12)
s Og 5

el e
X{BLC(xi =)~ C+ B Colxi+) —CST). - (8) whereC2¢%%€and ¢2°%®are the initial values of these vari-

Steps that have a higher velocity will eventually catch upables at the edge.

with slower ones. We assume that, due to entropic repulsion o o
between step33], a pair of steps cannot form a double step D. Determination of step kinetics parameters

or an overhang. Somewhat arbitrarily, the repulsive potential For an equidistant step train at steady state, and assuming
is chosen as a “hard-body” interaction, with the character-that pulk transport is significantly faster than the interfacial
istic distance between the steps set at five lattice parameteffocesses, our model is equivalent to that of [Raf]. Thus,
(=5h). The velocity of the trailing step in a pair that \ye can extract the values of the kinetics constants for adsorp-
reached this critical separation is adjusted such that a closggp, desorption, surface diffusion and incorporation into
approach is prevented. o steps from the surface by correlating our experimentally de-
Growth on a facet ceases when all initially imposed stepgerminedv (o) to the theoretically derived dependences in

have reached the center and the facet has become singul@iaf, [21]. The experimental data are best described 18}
Hence, growth can only be sustained through the replenishzee also discussion in R¢L0])

ment of growth steps. Therefore, in accordance with recent

findings for lysozyme at the supersaturation used in the bo

simulationg[12], we assume that growth steps are generated VEIT kp' (13
by two-dimensional2D) nucleation at the edge of the crys-

tal, where the supersaturation is the higj&s4,33. with b=15x10"°cm/s andk=500. From independent ex-

_The probability for the generation of & new growth step,ariments, we also know the value of the characteristic sur-
within a timet, after a preceding two-dimensional nucle- face diffusion length)\,=2x 10"*cm [43]. As shown in

ation event can be expressed|as] Ref.[43], in the case of rapid bulk transport, in terms of Ref.
21],
F>(tnucl ) nggea =1- eXF( =1 Otnucl) ’ (9) [ ]
. z2pac 2
wherel, is the steady-state rate of 2D nucleat|&T], _ s _ s
b AR and k A (14
| o= AC%%exp — B/ 8%, (10)
Equations(14) allow us to determine the values of and
and As. To find the characteristic adsorption timewe use the

relation

edg
o899 n| = . (12) 5
s As=Dgr. (19
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TABLE I. Parameters and initial conditions used in the simulations of the “base case.” For sources and
derivations see text.

Parameters Notation Value Unit
Bulk diffusivity D 1.06x10°8 cnéls
Adsorption resistance A 0.22 cm
Surface diffusivity R 1.0x10°7 cnéls
Characteristic surface diffusion length Ns 2.0x10°* cm
Characteristic incorporation resistance Ag 7.8X10°° cm
Mean lifetime of adsorbed molecules T 0.4 S
Temperature T 285 K
Initial vicinal slope p° 5.0x10°3

Initial bulk protein concentration c° 50 mg/ml
Equilibrium bulk protein concentration cea 3.1 mg/ml
Initial surface protein concentration Cg 9.1x10°° mg/cn?
Equilibrium surface protein concentration c 5.6x107° mg/cnt

There have been no determinations @f for lysozyme. distribution given by Eq(17), which represents the zeroth
However, for the protein canavalin, X210 <D <7 nodes of the Chebyshev polynomials, results in finer grid
X 10" 7 cré/s [44]. Hence, we assumB,=1x10 "cn?/s,  spacing close to the terrace edges, the steps. This mesh non-
which is about an order of magnitude lower than the bulkuniformity, together with the step-bound motion of the grid,
diffusivity, D=1.06x 10" % cnm?/s [11]. ensures high accuracy of the calculation of the surface flux
Before growth has started, or after equilibrium is reachedinto the steps. The vertical grid lines in the mesoscale do-
dCl9z=0 throughout the solution including=0. Hence, —main, which extend to the first horizontal grid line above the
from Eq. (1), interface in the global grid, i.e., o=25um, move with the
expanding/contracting mesh of the 1D surface domain.
o D7 _, eq_ Dr eq Since, due to annihilation at the center of the fasee be-
CS_TC and  Cg _TC : (16) low) and generation at the edge, the number of steps on the
interface changes continuously, as does the exact number of
From these relations, we determine the initial and equilib-grid points in the 1D surface domain and, thus, in the me-
rium values ofCs. soscale domain.
The values of the parameters and initial conditions used in In the z-direction, them-s domain contains nine horizon-
the simulations of the growth behavior of the proteintal grid lines between its top boundary and the crystal sur-
lysozyme are summarized in Table I, with the initial slopeface; see Fig. (b). These grid lines are generated according
p°=5x 102 representing an average value found in numerio the power law
ous experimentfl2,43.

Zig:Z%-F m

a

) (2-29), i=1,.k (18

I1l. NUMERICAL APPROACH
Herek=11, as in the surface diffusion grid, wit{=0, and

The “global” computational grid used for the diffusive z=25,m. The nonuniformity parameter was set at 2.05

bulk transport is identical to that used in REEO] As in that so thatzz_zgz 022Mm’ which Corresponds to the average

earlier work, the concentration distribution at the interfacemesh size in the direction. Note that we used here 11 hori-

was obtained in a mesoscale grid that covers the narrow inzontal grid lines to cover the mesoscale domain, compared to

terfacial area. The horizontal grid spacing in the mesoscale jn Ref.[10]. Detailed tests showed that this reduced mesh

domain is based on a nonuniform one-dimensional surfacgtjl results in sufficient accuracy and reproducibility. Equa-

grid used for theCs computations. This 1D grid is moved tjon (18) is also used to calculate the positions of Weetical

with the steps and is adjusted according to the changingyrid lines in the mesoscale domain to the left of the left
widths of the terraces at each time step in the following way crystal edge by substitutingfor x.

When the two Steps that bound a terrace are located at the AS in our earlier mode[lO], the actual Changes in inter-

+1

positionsx; and x;,,, nine additional grid pointsc?; are  face position and shape were ignored in the transport simu-
distributed over thigth terrace according to lations; see Refd.10,35 for justification.
] Step propagation was simulated as follows. When a new
Xg:(xi+1—xi) cos( 2|+1 o i=1,.k-2 step is generated, the old steps are renumbered by substitut-
b 2 2(k—1) ' ' ing i+1 for i. When a step reaches the facet center, it is
a7 annihilated. The step positions are moved along the con-
tinuous coordinate axig at discrete time intervaldt ac-
Hence, there ark= 11 grid points per terrace, and with typi- cording to
cally 150 steps/terraces on the interface, the surface diffusion
mesh contains approximately 1500 grid points. Note that the X t=xP+ o At, (19
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FIG. 2. Interface profiles obtained at various simulation times £ 48.8
for the base caséhe set of parameters in Table |, wik=1.24 S 48.7
X 10**cm?img 9 and assuming discontinuo@;, across steps; i.e., E_ 48.6 ‘
no exchange of adsorbed solute between terracgalues are in ) ) ©) ~_|
units of step heigh=102 A. Changes iz values atx=0 account 485 T~
for layers generated between the times noted, i.e., individual steps 48.4 L L . L L
remain at theiz while propagating to the right. The dotted horizon- 0 10 20 30 40 50 60
tal atz/h=0 separates new and old steps. Dashed Ateaces the X [um]

locati f the initial step densi turbation. . . . " .
ocation of the initial step density perturbation FIG. 3. Details of interfacial conditions after 2 min of growth.

wheren andn+ 1 denote th ive time st Thel aia) Interface profile, 1 through 4 denote steps that were the closest
erena - enote the successive ime steps. The locay, ,q edge at=0; +1 through+4 denote first four newly nucle-
values of the vicinal slope; are calculated as

ated steps(b) Distribution of surface concentratioBs; note the

h sharp minima at _stepéc) Corresponding distribution of bulk con-
pi= _ (20) centration at the interfac&;=C|,_g.

Xi+1— X
corresponding decrease in the surface concentration. In ac-
cordance with Eqg9)—(11), a reduction irC%®results in a
R=piv;. (21) decreased step generatigrucleation rate and, hence, a re-
duced vicinal slope of the new step train.

Since the kinetic parameters for nucleation and growth are Furthermore, Fig. 2 shows that this large perturbation in
compatible with those used in Rdfl0], we expect similar step spacing triggers a cascade of step bunches on the vicinal
values of step velocities, nucleation frequencies, and growtface. In this presentation, in which individual steps remain at
rates. Hence, we used the same simulation time &tep constantz/h, one sees that steps move through bunches on

The local normal growth rat® is obtained from

=0.025s. their way to the facet center; that is, bunches move with a
. The simulation prOCEdUre is very similar to the one Useq/e|ocity U bunchr which is d|st|nct|y lower than the average
in Ref.[10]. step velocityv. This behavior is similar to that obtained in
our earlier mode[10] and related to predictions of the kine-
IV. RESULTS AND DISCUSSION matic wave theory45]. In that work, we accounted for in-

teractions between growth steps only through a phenomeno-
logical parametek without consideration of the details of
surface diffusior{ 10].

First, we have investigated the evolution of the interface Our current more detailed model allows us to elucidate
morphology using the basic set of parameters listed in Tabléhe mechanism underlying this bunching and cascading pro-
I, allowing for discontinuity inC at the steps, as in E4). cess through interactions between the individual steps. For
With 2990 Eq. (12) yields for this “base case” the this, in Fig. 3 we show the profile of the interface segment at
preexponential factor in the nucleation rat#&=1.24 t=2min together with the corresponding distributions of
X 10" cm?/mg's. Simulations were carried out for a growth surface concentratiof¢ and interfacial solution concentra-
time of 60 min. Figure 2 illustrates the evolution of the in- tion C;=C,_,. To emphasize the consequences of allowing
terface profile for the first 10 min of this base case. Thefor Cg discontinuity across steps, we have emphasized the
newly created step train has about half the step density of theoncentration differences between the upper and lower side
initial train given by p°®=5x10"3. This is due to solute of select steps by data points for the respective boun@ing
depletion in the solution adjacent to the interface and thevalues, see the small circles in FigbB This C4(x) has local

A. Response to a large reduction in step production
rate (base casg
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600z N T 7 will pull away from the bunch. This, in turn, will widen the
//// terrace between steps 3 and 2, thus increasing the solute
500¢ . supply to step 2 from its lower terrace. As a consequence,

step 2 will eventually be able to also pull away from bunch
C, etc.

The spreading of the bunching cascade over the whole
facet can be readily followed in the long-term traces of the
step positions presented in Fig. 4. Overall, we see that the
initial perturbation, that stems from the acceleration of step

one due to the delayed nucleation of steft (see abovg
7 0— 50 100 150 200 250 300 develops into a step bundhand induces a cascade of step
12 X [um] bunchesB, C,.... By tracing the origins of these new step

FIG. 4. Time dependence of positions of all steps during first 10PUnches, one can see that the cascading wave propagates
min of growth. Step bunches—C are the same is in Fig. 3. A 2:1 With a relatively constant velocity and reache280 um at
blowup of areax<50um, t<100s) is shown. t=600s. In addition, while the step bunches propagate to-

wards the facet center and individual steps continuously

minima at the locations of the steps which are sinks for thdnove through them, the bunches tend to steepen. _
adsorbed solute, in agreement with analytical solutions ob- More detailed insight into the changes in number and, in
tained for the growth mechanism involving surface diffusionParticular, in steepness of the step bunches is provided by the
[21,26,27. Note that the magnitude of strongly depends ontime traces of the vicinal slopg recorded at three locations
the width of the terrace between two steps. As the distancen the half-facet, that are presented in Figg)85(c). Close
between two steps decreas€s,drops since the probability to the edge at which growth steps are genergkéd. 5a)]
that adsorbed solute reaches either of the bounding steps d@mly the initial macrostep passes-al min through the sam-
ing the mean lifetimer is inverse proportional to the square pling point. The consecutive reduced slope characterizes the
of the terrace width. Since th@; distribution is coupled to newly generated step train seen in Fig. 2. At the middle and
C4(x), its local minima at steps in bunches are deeper than aight locations, a forerunnegbarely discernible change in
wider separated steps, see Fic)3 step spacingis followed by a cascade of macrosteps which
The C4(x) distributions also shed light on the mechanismgrow in number on their way to the facet center. At both
of step motion through bunches and the associated cascaditarations, the last bunch to arrive is the initial macrostep, i.e.,
process. For instance, Fig(l3 shows that at that moment bunchA in Figs. 2—4. The number of step bunches created in
step 1 is much better supplied from its upper terrace thaifront of bunchA and registered at the right locatigfig.
step 2 and, thus will push deeper into bur@€hin parallel, 5(c)] are about twice the number registered at the middle
step 3 is better supplied from its lower terrace and, therefordFig. 5b)]. This is to be expected given a rather constant

Growth Time [sec]
W
[=3
(=]

200F T~ T T 9 200fF,.." 7

a d .
_ 150} @ o | 1sol @ A
Py Forystal ¢ COQ- /crystalt/l .
S 100} - 1S 100} -
50+ 8 50+ .
O.A s s 1 L N 04
200F ' ' ' ' : 7 200F - - - - - ]
b . e .
9.150'() el | 9.150-() cstgl% 1
2 100} —ZZ‘%Z—%mo- 27 |
50} 1 1 50t :
0—.«.11 J \ s \ . 0 ALJ)l \ ; \
200 T T 1 200F T T3
(C) ol (f) P
o 150r /e st/a!% 1 a 1507 /cryst/ayl//f ]
S 100t l —-2444 {1 & 100t ey S
50+t j 1 . 50+ J .
O J l J N N 0 nl“lll N !
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Time [min] Time [min]

FIG. 5. Time traces of slopeat three interface locations, 15, 150, and 286 from the crystal edge, obtained for base case @é€(c)
discontinuousC, at steps, same as for Figs. 2+d)—(f) continuousC at steps.
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150 F ] Fig. 6). This strongly suggests that the step bunching and
cascading observed for this system in response to different
perturbations present a finite amplitude instability, in con-
trast to the instabilities predicted earlier by linear stability
analyseg§14-1§.

The step dynamics that underlie this step train stability
become clear by a closer inspection of the patterns resulting
from this perturbation. The closer spacing between steps 1
and +1 delays step Xfor the notations, see abogveThis

) 4 accelerates step 2 that zooms forward to catch up with step 3
0 and cause a bunch. The situation appears identical to that
\ illustrated in the blown up area in Fig. 4, with the only dif-
-100 1 ! 1

0 50 100 150 200 %50 300 ference being the number of the accelerated step: 2 instead
of 1. However, this secondary nature the acceleration is cru-
cial for its consequences: the step acceleration is weaker and
FIG. 6. Interface profile response to increase in step productiohe velocity of step 2 adjusts to that of step 3 without causing
rate (A=8.16< 10'" cm’/mg 9. No bunching occurs; vicinal face is - a bunch. The sensitivity of the step patterns to the magnitude
morphologically stable. of the step acceleration is in the roots of the stability of the
step train with respect to small perturbations.
cascading wave velocity and twice the distance over which
step bunches can evolve. S C. Dependence of response on rate of step-density change
The above step pattern evolution is similar to the one To further explore this finite amplitude instability, we

btained with simpl del ti in H&D]. How- ) . ; X .
obtained with simpler model assumptions in R&D. How hI%ave performed simulations in which the rates, i.e., the mag-

ever, the number of step bunches, their frequency, and t - ude of th wih sten-densitv ch . d .
maximum slope reached in a step bunch are considerab%u e orthe gro step-density changes imposed per simu-

100

z/h

X [um]

higher in the present case. This means that the instability i tion tlmgAst?p walls varied. hln tpe fwig o t'hesfe runi, 7we
response to individual step density perturbations, as well a ef(;%asr‘??/ mearhy f\;kr 1815" n:zr/st fmr:n brom ’
in the creation of new step bunches through the cascading cnr/mgs to the 1. cnr/mgss of the base case.

6 . .
mechanism is higher. As suggested by the increased step!Ne ‘I’;"“e of 17;'( 10; was determined in ex_plorator%/ runs
train instability obtained in various theoretical analyses thaf® Y!€ld essentially the same new step spacing as that given

assume asymmetric step kinetic coefficight[46—48, the y th? initial vicinal §Iopep°.) Thi_s linear changg I re-
ofults in an exponential increase in step nucleation {isee

above strong response might be due to the discontinuity iilarly. i dith
C. at the steps allowed for in this refined model. To test this 9S:(9) and(10)] and, similarly, in new terrace width. =
Figure Ta) presents the results, with the inset illustrating

a base case was run with impog@gcontinuity, see Eq(5). ; o I,
posed y o) 1. the time trace of the nucleation time. One sees that the initial

The resultingp(t) traces at the three locations on the hal | te of step densit leation i h d i
facet are presented in Figid—5(f). We see that this restric- ow rate ot step densi ynucleation time change does no .
sult in bunching. A cascade of macrosteps forms only in

tion causes an increase in step train stability: the number df . ;
step bunches, the bunching frequency, and the slope in tHESPonse to the steep change that sets in at approximately 10
' ’ in. The importance of the perturbation magnitude is further

bunches are significantly reduced. The reason is that thignderscored by comparing Fig. 2 to the 8- and 10-min pro
int effectivel 2 O . ) e )
constraint effectively averagds; at a step, say step 2 &t files in Fig. 7a). Although in the latter two profiles a step-

=25sin Fig. 3. The resulting increase in velocity of this step . . .
increases the time needed for step 3 to escape the proximigFnSIty perturbapon associated vvidwerslo_pe of the new!y
of step 2 to initiate a new bunch. enerated step is present, no step bunchlr_lg or cascading en-
All following simulations were performed allowing for Sues. Bu_nches form only after Fh's slqpe dlff_erence becomes
discontinuousC, at the steps, Eq4). substantial in the ;2— and 14-min profiles. This W(_ell corrobo-
S
rates our contention that the above step bunching cascades
form only in response to step-density perturbations of suffi-
cient amplitude.

For the base case, we have recognized an increase in ter- Note that the different response to small and large density
race width between the trailing old step 1 and the first newperturbation should not be caused by different distribution of
step+1 to instigate step bunching. Similarly, one might ex- their Fourier modes. The slope changes discussed here are
pect a narrower new terrace to trigger an instability in therepresented by the Heaviside step function. Thus, the corre-
original, equidistant step train. Hence, we have performed aponding Fourier spectra have identical frequency distribu-
simulation with a large increase in new step density. Thidions, with the amplitudes proportional to the ratio of the
was achieved by setting the preexponential coefficient innitial to final slope values, i.e., to the perturbation magni-
Eq. (12 to A=8.16x10Ycnm?/mgs from the 1.24 tudes.

x 10**cm?/mg's used in the base case. This insight is further rounded out by the results of a

The results of this run are presented in a series of intersimulation in whichA was set to 8.18 10'" cn?/mg s during
face profiles in Fig. 6. No step bunches resulted in this casahe first 10 min and then abruptly decreased to 1.7
One sees that the new steps rapidly adjust their spacing te 10'°cnm?/mgs. Independent runs have shown that neither
essentially that of the initial step traiisee also the inset in of these values, when individually applied to the base case,

B. Response to a large increase in step density
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FIG. 7. Interface profiles response (@ varying rate of decrease in step production réiteear decrease oA from 1.7x10% to 1.24
X 10**c?/mg s during first 10 min Inset: corresponding nucleation time trace. Note that although a step density pertufoat@rslope
is present already at 8 and 10 min, bunching and cascading sets in only at 12 min, when the rate of change becdméshigi decrease
of A from 8.16< 10" to 1.7x 10*cm?/mg's att=10 min.

result in bunching. However, bunching should occur in re-function perturbation, which is equivalent to a series of har-
sponse to the sudden change from the steeper vicinal slopronic perturbations of various frequencies and amplitudes,
resulting from the first value, to the much lower one resultingdoes not cause step bunching, it is unlikely that a single
from the second one. This is confirmed by the results in Figharmonic perturbation may do so.
7(b). First we see an increase in vicinal slope, as in the case Based on these results, we suggest that the macrostep for-
of Fig. 6, followed by a bunching cascade in response to thénation associated with the growth kinetics fluctuations ob-
lower A, which, when applied to th@® of the base case, served in our experiments with the protein lysozyigigare
caused nothing. Note also that these results refute a hypgriggered by major step-density variations. Such variations
thetical instability scenaridlinear or nonlinear with the 5y arise from the intrinsically stochastic nature of two-
vicinal slope as the control parameter. dimensional nucleation. In the case of step generation by
dislocations, they may be the result of the interaction be-
tween steps originating at several dislocations in a complex
dislocation source, or by obstacles in the steps’ pathway
For a head-on comparison with linear stability theories[49]. This conclusion is supported by numerous observations
[13-16, we set the preexponential coefficient in the nucle-of differences in fluctuation amplitudes and time scales on
ation rate equation, Eq10), to 1.7 10*cn?/mgs. This crystals with different growth step sourcis4], as well as
value ensures approximate preservation of the initial slopagy the recorded variations in unsteady behavior following
step density on the crystal face even with decreasing supeghanges in step source activity on the same cry4t&0].
saturation at the location of step generation. If a simulation is
run with this value, no step bunching is observed in spite of
the slight misfit between the initial and the newly developing

D. Comparison with linear stability theories

slope. For the intended tests, after 5 min of growth via an VI. SUMMARY AND CONCLUSIONS
equidistant step train, we imposed a 5% harmonic perturba-
tion on step density by shifting each step ¥ We have explicitly included adsorption and diffusion on,

=0.05(; —X;_1)sin(2mx /X), wherex; andx;_, are the po- and desorption from, growth terraces, together with incorpo-
sitions ofith and (—1)th steps at 5 min, andl is the per-  ration into steps in a numerical model of coupled bulk trans-
turbation wavelength. We chose three value&:0f50, 100, port and interfacial kinetics in crystal growth. The model
and 200um, that cover the range of step bunching wave-was evaluated with parameters characteristic of the crystalli-
lengths observed in the experiments and simulationgation of the protein lysozyme. The results show that discon-
[2,4,10. tinuity in the surface concentration at steps, which can arise
The results of these runs were output in terms of series drom higher surface diffusion activation barriers at the steps,
interfacial profiles and step density traces at three face locdeads to significantly higher bunching instability. When con-
tions, similar to Figs. 2 and 5, respectively. Both groups oftinuous surface concentration was assumed, the simulations
results showed no step bunching for simulated growth timeseproduced the results of a simplified model in which step
as long as 1 h. This is not surprising: if a Heaviside stepsupply field overlap was accounted for by introducing a de-
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